Acknowledgement

A Project on Light Emitting Diodes By Vivek Tejwani, V.Priyan, Prakash Toshniwal, Jaswant Singh, Gaurav Kumar Agrawal, Vnvm Abhinav and Kishore R, Students of IIT Indore's 2011-'15 Batch Computer Science And Engineering, guided by Mr. Manavendra Mahato (Ph.D. in University of Michigan, 2007 and B.Tech in Engineering Physics, IIT Bombay, 2001)

Wednesday, 2 November 2011


ORGANIC LEDS

Imagine having a high-definition TV that is 80 inches wide and less than a quarter-inch thick, consumes less power than most TVs on the market today and can be rolled up when you're not using it. What if you could have a "heads up" display in your car? How about a display monitor built into your clothing? These devices may be possible in the near future with the help of a technology called organic light-emitting diodes (OLEDs).



OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or iquid crystal displays (LCDs) used today.

OLED Components:

Like an LED, an OLED is a solid-state semiconductor device that is 100 to 500 nanometers thick or about 200 times smaller than a human hair. OLEDs can have either two layers or three layers of organic material; in the latter design, the third layer helps transport electrons from the cathode to the emissive layer. In this article, we'll be focusing on the two-layer design.

An OLED consists of the following parts:
Substrate (clear plastic, glass, foil) - The substrate supports the OLED.
Anode (transparent) - The anode removes electrons (adds electron "holes") when a current flows through the device.
Organic layers - These layers are made of organic molecules or polymers.
Conducting layer - This layer is made of organic plastic molecules that transport "holes" from the anode. One conducting polymer used in OLEDs is polyaniline.
Emissive layer - This layer is made of organic plastic molecules (different ones from the conducting layer) that transport electrons from the cathode; this is where light is made. One polymer used in the emissive layer is polyfluorene.
Cathode (may or may not be transparent depending on the type of OLED) - The cathode injects electrons when a current flows through the device.
How do OLEDs Emit Light?
OLEDs emit light in a similar manner to LEDs, through a process called electrophosphorescence.




The process is as follows:
The battery or power supply of the device containing the OLED applies a voltage across the OLED.
An electrical current flows from the cathode to the anode through the organic layers (an electrical current is a flow of electrons). The cathode gives electrons to the emissive layer of organic molecules. The anode removes electrons from the conductive layer of organic molecules. (This is the equivalent to giving electron holes to the conductive layer.)

At the boundary between the emissive and the conductive layers, electrons find electron holes. When an electron finds an electron hole, the electron fills the hole (it falls into an energy level of the atom that's missing an electron). When this happens, the electron gives up energy in the form of a photon of light

The OLED emits light.
The color of the light depends on the type of organic molecule in the emissive layer. Manufacturers place several types of organic films on the same OLED to make color displays.
The intensity or brightness of the light depends on the amount of electrical current applied: the more current, the brighter the light.




0 comments:

Post a Comment